Date: Tue, 27 Apr 2010 20:10:21

Author: Paul Lulai

Subject: Re: Smaller Spacings for Double Slit Samples

Post:

This is a multi-part message in MIME format.

------_=_NextPart_001_01CAE66F.B2D53C0F
Content-Type: text/plain;
charset="iso-8859-1"
Content-Transfer-Encoding: quoted-printable

another list mentioned using hair. then the lab becomes finding the =
width of hair, not a comparison of knowns. i am intrigued. any issues =
with this approach?
=20
Paul Lulai
Physics Teacher
Medtronic - St Anthony RoboHuskie 2574
3303 33rd Ave NE
St. Anthony Village Senior High
Saint Anthony Village, MN 55418
=20
(w) 612-706-1146
(c) 612-208-PHYZ (or 7499)
(fax) 612-706-1020
plulai@stanthony.k12.mn.us
http://www.stanthony.k12.mn.us/hsscience/ =
=20
=20

________________________________

From: tap-l-owner@lists.ncsu.edu on behalf of Sam Sampere
Sent: Tue 4/27/2010 7:53 PM
To: tap-l@lists.ncsu.edu
Subject: Re: [tap-l] Smaller Spacings for Double Slit Samples

I use the Pasco slit set for an interference/diffraction lab I wrote =
years ago. Use the Pasco multiple slit set. There are four sets of slits =
to use. I keep slit width the same and vary the distance between them. =
There are four double slits you can match up that way.
=20
1) there is a multiple slit option (width and separation constant) with =
n=3D2, 3, 4, 5(?). Use n=3D2.
2) on the variable double slit (width =3D constant, separation smoothly =
varies), use the widest separation.=20
3) There are 4 sets of double slits which change the 2 parameters. One =
of these matches the width from 1 and 2.
4) Sorry, I don't remember the 4th, but you can easily find it. Let me =
know if you want it and I'll send that detail.
=20
Have the students mark lines on the minima. Finding the spacing between =
adjacent maxima is now easy, especially if you mark off say 10 (n) o =
minima. Measure the distance between the furthest mins (in mm) and =
divide that by n-1(the number of bright fringes).=20
=20
They can measure L, the distance from the slit to the screen. A plot of =
a/L vs.d gives you lamba for the slope. The plots are typically very =
very very linear and they come up with lambdas very close to nominal, =
within 5%.
=20
Use this lamba to determine slit width for single slit diffraction =
patterns and you get very good values for width, too.=20
=20
I think interference and diffraction are one of the coolest labs of the =
2nd semester.
=20
Sam
=20
________________________________

From: tap-l-owner@lists.ncsu.edu [tap-l-owner@lists.ncsu.edu] On Behalf =
Of Bill Norwood [bnorwood@umd.edu]
Sent: Tuesday, April 27, 2010 4:59 PM
To: tap-l@lists.ncsu.edu
Subject: [tap-l] Smaller Spacings for Double Slit Samples

Hi Taplers,

=20

In one of our labs they are needing double slits with known spacings,=20

in the range of about 0.1mm to 0.2mm.=20

The only usable double slit on the PASCO plates=20

is the double slit on the multiple slits slide, at 0.125mm spacing.=20

=20

(Sorry, but I don't know why they are specifying this,=20

but the TAs and instructor were in agreement about it.)

=20

Any ideas?

=20

Many thanks,

Bill Norwood, U of MD at College Park

=20

=20

------_=_NextPart_001_01CAE66F.B2D53C0F
Content-Type: application/ms-tnef;
name="winmail.dat"
Content-Transfer-Encoding: base64

ODM2MTA2RENFQUVFOEU5AG0HAQOQBgDEHgAAOAAAAAMANgAAAAAAQAA5AP/Ky5Jv5soBHgA9AAEA
bGVyIFNwYWNpbmdzIGZvciBEb3VibGUgU2xpdCBTYW1wbGVzAAAAAEAATgAA0+owbebKAR4AWgAB
AAAAGwAAAHRhcC1sLW93bmVyQGxpc3RzLm5jc3UuZWR1AAACAVsAAQAAAFMAAAAAAAAAgSsfpL6j
EBmdbgDdAQ9UAgAAAAB0YXAtbC1vd25lckBsaXN0cy5uY3N1LmVkdQBTTVRQAHRhcC1sLW93bmVy
QGxpc3RzLm5jc3UuZWR1AAACAVwAAQAAACAAAABTTVRQOlRBUC1MLU9XTkVSQExJU1RTLk5DU1Uu
D1QCAAAAAFNhbSBTYW1wZXJlAFNNVFAAc21zYW1wZXJAc3lyLmVkdQAAAAIBXwABAAAAFgAAAFNN
LWwtb3duZXJAbGlzdHMubmNzdS5lZHUAAB4AaAABAAAABQAAAFNNVFAAAAAAHgBpAAEAAAARAAAA
c21zYW1wZXJAc3lyLmVkdQAAAAAeAHAAAQAAACkAAABTbWFsbGVyIFNwYWNpbmdzIGZvciBEb3Vi
bGUgU2xpdCBTYW1wbGVzAAAAAAIBcQABAAAAJQAAAAHK4xlAZuFcBV1oI0NBpLFkmibDPxMAyxd5
oAAJd3UgAAEFq+wAAAAeAHQAAQAAABUAAAB0YXAtbEBsaXN0cy5uY3N1LmVkdQAAAAAeABoMAQAA
Y3BnMTI1gjIDQ2h0bWwxAzA/AQMB9wqAAqQD4wIAY2jBCsBzZXQwIAcTAoD/EAMAUARWCFUHshHV
EePbCO8J9zsefw4wNR+fH3E7EeEMYGMAUAsJAWQzNpMRYAulNCAQAipcDrIDAZAOEDkgPEhUTUBM
IGRpcj0lEHI8Pn0k0wAhAzAmIWRv5wDgJiEKsVxxHmAmIRtAbwMwJoURYCSLMyRgJYBF3EFEJlAk
jArjICqPK58GZyRQDvA8U1RZTE5FKn0uAgISLWYA0GVfAzAAAAqzAZEvxm0DEHnmOhcQB0BpYgUQ
BTA7BdBBUkf0SU4x4DALgDoEOVI4g0BGQU1JTFkx4CKhMgUiLCJzAHEtG4DlBoEiMopMSTcfOC85
P486TztfPG8y5ERJVj3/Pz8PQB9BL0I/Q08y5EE6CTIgbmsz20NPTE+OUjHgCjJHQFRFWEaAhERF
TNBSQVRJRmBZMeB1bgSBS8FlMopTiFBBTkTiSHlwTuNfS/9ND04fTyxLoHYEAGnudAmAUR9SIXAI
jzV1Sg9e7/1f9jhgj2GfYq9jvzKZROKQQ2hwRAEQYXUlEB9Fj0aWSGFD/gZgY3RpvwIgDvEz+TKK
Lr4lYS8uXxcsj3M/JKo2LiFNRVQMQSA1wAeAPUdFTnZFXaFSECAFoAIwCfB0DD0iBeAlkzguMDAi
LiPAMDEuZmA5MFw0InK/dR8t6iBvQHSlXNA9WxBhUArAYWATwy6vLiEhLS1QM9tHZEotd5BQR8Fw
eEdGLehCT1R3kE2A0zKKfzA/fe9yL3pfhS91X3ZrU0tgWVBFX0ZdoHaQSRpEd8dGicAlsENZROxD
U4TtLhIvKj8t4Yc/FSUhNRFgPIGwRFkgkQtgbmc9d0AtVQXwxVDSPQoyIHZMkHJclMeE7SPRjg9n
OTYlcESxISXWIGlkPZUAT1elR3BlC1B5VGgxN3lA/DM3JlkAACeFKCMn4Sh/f5JPk1+UZ5Zvl3+Y
MSRgn9gAcNxvdBnQBcAyIHMFQAeAtwIwb1FbMXUAkI/QIBtQFZuALiSLOCRgJm5izHNwAoAmeCdh
AUCf5798sBnQA6Cm4Y+hMRBiBZG9B4JmZ9GoQqwSA/BkpuDsIG8m4KiCLHbQptCmoL13wW0KsQQA
BACmoHBwA2AA0NRoPySMNZQRL0ZSJln/JmeeOwHAJmcKortICoAkjP95oIRhRLG6n6AvmZ+ar5u/
/5zPu3+e78CfoQ+iH6MvpD//pU/IX7nfwA+0X7Vvqvq7//+9D74fvy/Q79c/2E/ZX8G/W8LPlKlT
s/A1wHQIcGXwNjczMpZfxS/cL90//d5MUi6Rx3/Gb+Yv2Z/Jl+/LCgcT4NvNxTXimX1QbCC/PcBs
QFe3UQgABuBIqCBrCJAg+Q4wNzTO/9APu0/VD9Yf/9nv2v/pD+Pf5O/l//pv6B8f/4/qP+tP7F8F
EfZoD2WuoNhNTiAgwC4QOPf/+Q//+h/7L/w//U/+XwWvAH8Bj/8Cnxf/BL8dHwbfB+8I/yMf/xX/
NhCfEa/wzChjPeTN4OI4f0BIWVo9sBAh99B4OTkpPs8/30DtbAB4/T3pMM3gQ29Ef/DMXMDuYk5A
p1C3QPajLmtCEC74bW4uqCBHj0if8MwoP1cpTzJfK2g8dsBo4GBmA3hALIB0cDovL3dNU/AuSv+o
IC9ot5BjNfeAbsuQL8ycrRBlbLpkjSJmVyCtIKdQe0KQ6YmQUkyAcEtpQFOPVJ+ZVaZ9fTxxVyBy
c42Q+c1hMVzuIVFfOb86zzvf/wnMWL9Zz1WlTy9QPxepZc/fZt9cz96BzZCEcEGE7l4P/18fYC9p
HyuvLL9PD2UvF4v/Ld8u7y//MQ9onzMvND81T/84f3p/e498n32vfr9/z4Df/4Hvgv+ED4Ufhi+H
P4hPiV//im+Lf4yPjZ82/5G/cg9rv/9sz23flK9y33kfjszOMY/T/3UfcPN2v5B/kY+cD4+PoE//
oV+ib6N/pI+ln6avp7+oz2up35UcMsmhUK2Nq+Fk+6vQ7nFuzbBcMM3EZ7+uSvuen3dPM5qCsCyb
v6tPrF//rW+Sb5N/t6+Vn5avl7+Yz/9vn3Cvwn+aL7cPdOGcb51//3XvtP+6H71PuB+5L80fzi//
zz/QT9Ff0m/Tf9SP1Z/Wr//Xv9jP2d/a79v/3Q/eH98v/6+PsJ+xr7K/s8/Lz7Xvx2//4694X+w/
7U/uX+9v8H/xj//yn/Ov9L/1z/bf9+/4//oP//sf/C/9P/5P/18AbwF/Ao//A58ErwW/Bs8H3wjv
Cf8LD/8MHw0vDj8PTxBfEW8SfxOP/xSfFa8WvxfPGN8Z7xr/3/+n4Q/iElegcj28wHJWK4chYR+B
IlJjaFxxXG9/THhqYU1MH4FObx7fH+5IBFIgJ5BiSW5kZZx4PUcwVizmsHFjIyASalxBZGLnsH4g
X/8sEivRThPLYyY/J068X+f/I75/v489VGFLQG1h38D/wgHGwDDPUmhCVisrwak1Z0ZyM8A6aY8v
NwoDdFonkHAtbC1vd5lOQHJASYBiUHMuVdCAc3UuZWR1IEtQsCBiZWjA0MTQb8TQ6FNhbT4CcDwg
SbFMT19NXy0/Nk83X0GCU2PgdAc47zn/dIdUdWUgNCgvMjdHsDAckCA3wDo1MyBQTT7PP9/PQO9B
/0MPS1RUb0S/Rc//Oww8TUi/Sc9K30vvTP9EFeB1YmplY0SvT490eKBSZTogWzuTXT4AeTPQbGw8
ID4AJ/BjwG6UZ3PAQG8oEERvWDC3XEA+ACygdD5DXEBzUn//U49Un8YPxx9hD18fYC+8Dv/Kv+mv
HD9jHy3PJ98gfyGP/yKfbB9tL24/b09wX2bPL88jcW8x7WNvbF0gPSPOMHtzMs8z3WNmwDA0vyFV
QUkgdXNHgHRo8UeAUGFzewC/0F3Sf4BbXfBdEmE9UOZwdDwgZhM+kVHwZS90kGZmcnnAYHRpPUHm
8D3hgFJc8B50gDB/cYQwf1BrZWVicIBEd2lkf7B/o3OnPiCGoSnAIHZzAHl/o590kFGwgSDAcD1h
dHeI4Gs9UH+xbYZPZF1kh9R5711gevCBITPQdHDwf2CJAMd/sI7wgzBheS5hj2Kf/2vJZ19ob2l/
ao9rn3Ivcz9/dE91X3Zvd394j3mfMn89/5iQfM9+L2FvkP+XL8M/xE//nP+Tb5R/lY+ln6avmL+Z
z/+a35vvqV+eD65/oC+hP6JP+aNbMSl/ooaRPGCBEIUt9G9wgpMoiXSKYn+Ar/HXjvCConsAbotS
dLswiXBFiaFufCAsIDO/0DThv9A1KD8phDS/oY///6Uvkh+qL6s/rE+tX7YPr3//sI+xn7Kvs7+0
z7Xftu+3/3u5D7ofMrswPUF/soqhae8pkF2RjZm9Rj2+p7/QvgnIc21vg2BobIrQ1fL9XmApv9B/
dolxXmCAgr4m/4QwwT/CT8NfxG/Ff8aPx5//0E/Jv8rPy9/M783/zw/QH+/RL9I/00+jLjO7MIZo
p9Djh1aNm3doaY8RcPCBIH5nf5R8ML4iijCBcTyQIP5PYKA90n+xf4GO415g2nb/iaGCUO3guxCK
U8Ef3O/d///fD+Af4S/iP+rv5F/lb+Z//+eP6J/pr+q/68/s3+3v7v/7R5C7MFNdIIrAv9B/UI2Q
3G4nXfA+oIowbT1wABDNf7I0f7C/0GJ1XfCOZveDsHvg2YFmYJCKgF3ghDDmTICxijFrbjvwgUCo
0J+OYo/ARJAO0YpTSSdcMP+AkYpxj3Mp0P+QDlD2//gP//kf+i/7P/xP/V8GD/9/AI//AZ8CrwO/
BM8F3wbvB/8JD/8KHxJ/E48Zv6dfqG8fjxX//xcPGB8oLxo/G08cXx1vHn9/K+8gnzEPIr8jzyTf
JelI7GF2f5RRsHXa4ESQXPB5O3Bya4LQYJGHgdWUbe1gkGk7cIQwRg6hXMGJxONclIu3YWRqfGEQ
cTtwfnhAAbuiD6IOIQuRXmBw/1hg1iBcMA5wD+U+s4egh7Fnj9C7EDFAKG7VYT/HTd8OIYcgf5SL
P3+yZocg9LK3D0FgkFzwKGCQhSBtuzBbimI0AHba0Y9kYg5wbsgtMSh/sm51DIOHofpi1hBnKuD2
IVzB2fHb3/8njxR/LI8tny6vL784bzHf/zLvM/81DzYfNy84PzlPOl//O288f02vTr9U7ym/Ks9a
v/9RL1I/U09jX2RvVn9Xj1if/1mvZx9bz2w/Xe9e/2APYRrvhmEOcI6jRvVMv9BHa/Yz74nT1wKI
MYnTY/CwPmCEMBpB83Bsg2DxQmEvTPeKkPQQioBnSqA/MY5iguD/DIBC8IDiezS84IiBhmF8w/OD
4UcyeXDycERDPbCKwf+BWD8CbbGKYkdheQF2oPNAt49Bv1N+gmQOMIFEY3zg/9pSe9APoD/RREC/
0L9SSeH8NSUSb2LfT89n32jvaf//aw9zv20vbj9vT3BfcW9yf/9zj3Sfda92v3fPhq+Hv43v/2UP
Zh+Tv4oviz+MT5xfjm//j3+Qj5Gfkq+gH5TPpT+W7/+X/5kPmhnAsoYhPpB+hHvB/xIB8GA/0XtV
9dV+8a6g8uBvvGaoMEVgvkBj2NOmkHR/8+FJob3CDaLy8BCwgVNn59lA9sDV8Gx1PzF+4r1j/3nx
2UBNn5u/iK+gv6HPot//o++sn6YPpx+oL6k/qk+rX/+sb61/ro+vn7CvuU+6X8CP/53vnv/GX7zP
vd++787/0A//wh/DL8Q/xU/Sv8dv19/Jj//Kn8uvzLoLwIYiPuA/EPPh/mbwYXqiSlS1WIBytcD0
Zn2DMW/xwElRfoDRYOc2Mv/2sbHQD2A+IPBghp/Of7tv/9N/1I/Vn9av31/Yz9nf2u//2//dD94f
3y/gP+FP4l/jb//pz+rf8Q/Qr9G/9t/tT+5f/+9v/3/xj/Kf86/0v/XPAz+/9+8IX/oP+x/8L/05
U36Q//3v/v/r7wP/BQ8GHwcvD9//CU8KXwtvDH8Njw6fD68Qv/8RzxLf/O8VLxY/KJ8BLwI//xef
GK8ZvxrPKt8c7x3/HwglPiB55+A9Ih9gUkVoQ1RJJdA6fnAf8CIJQwBkPUqRUnBGMnklcDM1Jzsz
fzSPNZtIFlJK8OhASeXQZXg9K0uQJzwxIaBjIaBqXBB1bGRiKIB+IF//P3I/MSFAs0EwQzpQOb86
zM8ijzlPJK8lvz1UJu8n/7sr3zIxQkdbPyFIx0Z68X46O6wmYDJQSmozWTzRcCAtbC1vd7NQckAf
tPA2oH2geqB5kC5lZI224FtO/1AHXSBPhlBYQmVogQAt4E8t4EJSaYEQIE5+8He3oluGYoVwU7NA
dW1kUhPlRMwxKiFCUkdZP/NAn+9Jr0q/FKN8cHRMT01fTmcWVLgRhFB5efBBcHI7U1Do4Dd58EhA
MhAgNMA6NTkgUE1VP1ZP71dfWG9Zf3h1b1svXD9ObH9PrV/PYN9h72L/ZA8UhXX4YmpltZBln2av
TmdQpH1SUFNHMIEQ6ZAU0DtQY6u0gbg0RH5QYrSxU7Ty/xThfNB+EGmPap9rrylvKn//d99173b/
Lp8vrzC/Mc95//9BPztPHwc4/4L/gU+CX4Nvf4R/hY+JX4pvi3/noLJQc/xzPVrgtZM9jI1fjm9C
J3PlwHPGLbHQXoBmJztL8JsCMFNJWkU3oEWQcHTmIpFvmNNIaWVgUMBzEfRzLG+/L5oyiJ+Xm3+O
75ZfmK9+lIgxUEdQks+T3/+U75X9mH+Zj5qfm6+cv53P/6t/oJ+hr7JvLL8tz6MPpB//pS+mP6dP
qF+pb6p/sg+sn/+tr66/r8+w38C8PRDm9nQw948A6DPosXnms0AgUGBzkVsfkHQ0c3Sh6GB3dLBo
/CBrVDBRICYAc2VeQLLP/7Pft8+437nvwR+8D70fvi//vz/Gz9IPwm/Df8SPxZ/Gr//YBHOQ6KPm
QHOg5yPoQHQwQegQMC4xbW3ooG/14DEy4HAuzG/Nf86Pz5//0K/X39LP09/U79X/3Y/mz//ZL9o/
20/cX91vZQbfIZEw+mzJcHXwgHRSylnIMd8DIe5QU0NPIHUQYXT/XfDhP+JP41/kb+V/7K/nn//o
r+m/6s/yX/w/7f/vD/Afv/Ev8j/edskj9K/fIW0+8P+REHURyrXKwT0wXkD2YOAy/DI14HHL1eEv
96/4v/nP//rfAg/8//4P/x8ALwE/Et//A18EbwV/Bo8HnxjfDf8PD/8ZT7aPt58QbxF/Eo8TnxSv
/xW/Fs8X3ygfGf8bDxwfHS9THj8uFyhTleByXjFileARSQmBbiKfIzg4oH43I+twgC4IdMDLcssQ
aN/JcMlHI8BvcDJwecoS3xD/CSDMXyDPD28lzybfLg8o//8qDysfLC8tP0DvL18wbzF/nzKPM59G
5jWi3xJUQckgz99gU/BzkEjAcnWRAHPxPndRQHRw3uFB8MmgZW3nWvHf1XSwLik7fzyPPZ//Pq8/
v0bvQd9C70P/RQ9Mn/9W70g/SU9KX0tvTH9c71IP/yGfIq8jvyTPVH9Vj2X/V6//WL9Zz1rfYm9s
n3evhU96b2WPZp9nr2i//3zffe+OX4APgR+CL4M/is9/lI+Gb4d/iI+Jn4qvmoVN953gObKd4Gs7
QIwvjT+RL/+SP5NPmn+Vb5Z/l4+Yn6Avf6fPm8+c353vnv+gD63EQhBpbGwgrGF3b29KZDtQVchy
TUQMEkOqb7TAZd+BUKpga6I//6NPpF+lb6Z/ra+on6mvqr//q8+zX7yPrv+wD7Efsi+zP//Cj7ev
je+O/5APkR+6H7sv/8ufvU++X79vwH/ID9HPw6//xL/Fz8bfx+/Xz8oPyx/ML3/NP85Pz1/Qb+Df
0o/nmDHCMNWRL0RJVuAf5x8/6X/qj+uf7K/tv+fyNTgh6FFCT0RZ000yN6HoUUhUTUzdUH30AAAA
X28zUkwxOXRBMDAxMTgzX0VFRERGQzUyQzdBRjg2NDRBQzM1RUNBRDVCRkU1NEE5MDQ4RjM1ODMz
Q0BleDA3LmVjZS1pc3IudW1kLmVkdT4gPDY4NzJfMTI3MjQxNjA3OF9vM1Mwc1dRTzAxNjgxN184
NzIyNTdEQTAwNDVBNTQ5QjUyOUQwMjBEMjg5Rjg3NTIzMjQxOTM2QUJAU1VFWDA3LU1CWC0wNy5h
ZC5zeXIuZWR1PgAAHgBHEAEAAAAPAAAAbWVzc2FnZS9yZmM4MjIAAAsA8hABAAAAHwDzEAEAAAB2
AAAAUgBFACUAMwBBACAAWwB0AGEAcAAtAGwAXQAgAFMAbQBhAGwAbABlAHIAIABTAHAAYQBjAGkA
AE0ATAAAAAAACwD2EAAAAABAAAcw/8rLkm/mygFAAAgwGYrjsm/mygEDAN4/r28AAAMA8T8JBAAA
HgD4PwEAAAALAAAAUGF1bCBMdWxhaQAAAgH5PwEAAABoAAAAAAAAANynQMjAQhAatLkIACsv4YIB
AAAAAAAAAC9PPUZJUlNUIE9SR0FOSVpBVElPTi9PVT1GSVJTVCBBRE1JTklTVFJBVElWRSBHUk9V
UC9DTj1SRUNJUElFTlRTL0NOPVBMVUxBSQAeAPo/AQAAABUAAABTeXN0ZW0gQWRtaW5pc3RyYXRv
cgAAAAACAfs/AQAAAB4AAAAAAAAA3KdAyMBCEBq0uQgAKy/hggEAAAAAAAAALgAAAAMA/T/kBAAA