Date: Thu Oct 29 23:13:11 2009 ** **Back to Contents ** ------------------------------------------------------------------------ **

Author: Paul Lulai

Subject: Re: centripetal acceleration and friction demonstration

Post:

This is a multi-part message in MIME format.

------_=_NextPart_001_01CA590E.06224E22
Content-Type: text/plain;
charset="iso-8859-1"
Content-Transfer-Encoding: quoted-printable

Should mass matter? I don't think mass matters. Isn't friction the only =
force in the horizontal plane?
f=3DuN=3Dma
umg=3Dma
m's can be cancled.
=20
=20
=20
Paul Lulai
Physics Teacher
US First Robotics Teacher
..:: Medtronic - St Anthony RoboHuskie 2574 ::..
3303 33rd Ave NE
St. Anthony Village Senior High
Saint Anthony Village, MN 55418
(w) 612-706-1144
(fax) 612-706-1020
plulai@stanthony.k12.mn.us
http://www.robohuskie.com =20
http://prettygoodphysics.wikispaces.com =
=20
http://sites.google.com/site/go4st8physics/ =
=
=20
http://www.stanthony.k12.mn.us/hsscience/ =
=20
=20
=20

________________________________

From: tap-l-owner@lists.ncsu.edu on behalf of Andrew Morrison
Sent: Thu 10/29/2009 9:30 PM
To: tap-l@lists.ncsu.edu
Subject: Re: [tap-l] centripetal acceleration and friction demonstration



Do you get the different masses at the same radii to fly off at the
same time? I did it three times, and each time had a different
result: once the large mass came off first, then they both came off at
the same time, then the small mass came off first. I need to perfect
my technique, I guess.

On Thu, Oct 29, 2009 at 8:39 PM, Anthony Lapinski
wrote:
> This is a great demo! I use a lazy susan, which you can get cheaply at
> IKEA and other places. You can do the same masses (coins, washers) at
> different radii, or different masses at the same radius. Rotate the
> platform. Compare angular speed and linear speed. Then centripetal
> acceleration and centripetal force. Static friction, etc. Relate this =
to
> the Earth spinning, centripetal acceleration, apparent weight (equator =
vs
> poles), etc.
>
> tap-l@lists.ncsu.edu writes:
>>Ah...center of moment...right. Yeah, I think stacking a few pennies
>>and gluing together might do the trick.
>>
>>I'm starting to think this might be a demo that really isn't done all
>>that often.
>>
>>On Thu, Oct 29, 2009 at 6:29 PM, Bernard Cleyet
>> wrote:
>>> I'll leap in where others have refused to tread -- I think you've =
got
>>it;
>>> having the moments at the same radii is most important.
>>>
>>> bc not an angel
>>>
>>> p.s. Note: The centre of mass is not the same as the center of =
moment.
>>> Would using varying numbers of same coins stacked (glued together)
>>solve
>>> this?
>>>
>>>
>>>
>>> On 2009, Oct 29, , at 15:23, Andrew Morrison wrote:
>>>
>>>> I wanted to do a demonstration in class where two objects of =
different
>>>> mass are placed on a rotating disk at the same radius to show =
whether
>>>> one will fall off before the other or if they fall off at the same
>>>> time.
>>>>
>>>> After multiple trials, first with a dime and a quarter then with =
other
>>>> various objects, I am pretty sure I can convince my class that any =
of
>>>> the three possibilities is correct. Does anyone have a method or
>>>> suggestions of techniques for consistent and accurate ways of
>>>> repeating this demonstration?
>>>>
>>>> It seems to me that the two objects would need to have the same
>>>> material in contact with the surface, to have the same coefficient =
of
>>>> friction, and would need to have the same dimensions, so the center =
of
>>>> mass of each is in the same spot. Is that right, or am I =
overthinking
>>>> this demo?
>>>>
>>>> Thanks!
>>>>
>>>> Andrew
>>>>
>>>
>>>
>>
>
>
>




------_=_NextPart_001_01CA590E.06224E22
Content-Type: application/ms-tnef;
name="winmail.dat"
Content-Transfer-Encoding: base64

eJ8+IjMDAQaQCAAEAAAAAAABAAEAAQeQBgAIAAAA5AQAAAAAAADoAAEIgAcAGAAAAElQTS5NaWNy
b3NvZnQgTWFpbC5Ob3RlADEIAQ2ABAACAAAAAgACAAEEgAEAQAAAAFJFOiBbdGFwLWxdIGNlbnRy
aXBldGFsIGFjY2VsZXJhdGlvbiBhbmQgZnJpY3Rpb24gZGVtb25zdHJhdGlvbgDEFwEFgAMADgAA
ANkHCgAdABYAAgAbAAQAPgEBIIADAA4AAADZBwoAHQAWAAYAMgAEAFkBAQmAAQAhAAAAQURFOTEy
N0YyMDgzOEU0Q0IyOTcyMzc4NTJBMzg2OTgAFgcBA5AGABQeAAA4AAAAAwA2AAAAAABAADkAzlzN
aQ1ZygEeAD0AAQAAAAUAAABSRTogAAAAAAIBRwABAAAAOgAAAGM9VVM7YT0gO3A9Rmlyc3QgT3Jn
YW5pemF0aTtsPUVYQ0hBTkdFLTA5MTAzMDAzMDY1MFotOTcxMAAAAB4ASQABAAAAQAAAAFJlOiBb
dGFwLWxdIGNlbnRyaXBldGFsIGFjY2VsZXJhdGlvbiBhbmQgZnJpY3Rpb24gZGVtb25zdHJhdGlv
bgBAAE4AgJXD6QhZygEeAFoAAQAAABsAAAB0YXAtbC1vd25lckBsaXN0cy5uY3N1LmVkdQAAAgFb
AAEAAABTAAAAAAAAAIErH6S+oxAZnW4A3QEPVAIAAAAAdGFwLWwtb3duZXJAbGlzdHMubmNzdS5l
ZHUAU01UUAB0YXAtbC1vd25lckBsaXN0cy5uY3N1LmVkdQAAAgFcAAEAAAAgAAAAU01UUDpUQVAt
TC1PV05FUkBMSVNUUy5OQ1NVLkVEVQAeAF0AAQAAABAAAABBbmRyZXcgTW9ycmlzb24AAgFeAAEA
AABBAAAAAAAAAIErH6S+oxAZnW4A3QEPVAIAAAAAQW5kcmV3IE1vcnJpc29uAFNNVFAAYW1vcnJp
MjlAZGVwYXVsLmVkdQAAAAACAV8AAQAAABkAAABTTVRQOkFNT1JSSTI5QERFUEFVTC5FRFUAAAAA
HgBmAAEAAAAFAAAAU01UUAAAAAAeAGcAAQAAABsAAAB0YXAtbC1vd25lckBsaXN0cy5uY3N1LmVk
dQAAHgBoAAEAAAAFAAAAU01UUAAAAAAeAGkAAQAAABQAAABhbW9ycmkyOUBkZXBhdWwuZWR1AB4A
cAABAAAAPAAAAFt0YXAtbF0gY2VudHJpcGV0YWwgYWNjZWxlcmF0aW9uIGFuZCBmcmljdGlvbiBk
ZW1vbnN0cmF0aW9uAAIBcQABAAAAGwAAAAHKWQlBs4FG0l59mkWgsWP5It4kPFQAAQoG8QAeAHQA
AQAAABUAAAB0YXAtbEBsaXN0cy5uY3N1LmVkdQAAAAAeABoMAQAAAAsAAABQYXVsIEx1bGFpAAAe
AB0OAQAAADwAAABbdGFwLWxdIGNlbnRyaXBldGFsIGFjY2VsZXJhdGlvbiBhbmQgZnJpY3Rpb24g
ZGVtb25zdHJhdGlvbgACAQkQAQAAAJYVAACSFQAArl0AAExaRnU/7HObAwAKAHJjcGcxMjWCMgND
aHRtbDEDMD8BAwH3CoACpAPjAgBjaMEKwHNldDAgBxMCgP8QAwBQBFYIVQeyEdUOUQMB3RDXMgYA
BsMR1TMERhDZSRLvZjQQbyBUCXBi3nUQ8BFABdER1TUYXxF74jYDxlRhaANxAoAR49sI7wn3Ox5/
DjA1H58fcTsR4QxgYwBQCwkBZDM2kxFgC6U0IBACKlwOsgMBkA4QOSA8SFRNQEwgZGlyPSUQcjw+
fSTTACEDMCYhZG/nAOAmIQqxXHEeYCYhG0BvAzAmhRFgJIszJGAlgEVMQUQmUCSMNzclcFRwSVRM
RSp9JFAO8FIQZTogWwGQcC1s+F0gYwnwJjAFIBFAB0AWIADQLfBsBJBhdGnjAiAuoG5kIANQDeAv
Mz8BAARgAIAmMC8jKo04Nd0lcC8rvyUiCuMgMs8z3wUOEDYO8DxNRVRBCCBuYQeAPUdFTsBFUkFU
T1It4AIhGS4BPSIF4CWTOC4wRDAuI8AwMS4yADj4MjgiKn0tATJAKj8s0Qs1DyUhNRFgPEJPRI5Z
Kn0j0Tx/Zzk2JXAIRElWJdYgaWQ9MUFQT1dBLTALUHlU2GV4dCnwDkA3JlkAAP8nhSgjJ+Eofz6f
P69At0K/50PPRNMkqTY0SEpEnyUEhDQ4JXBGT05UN8FZHhE9IzjwTqIgAJB62zcQFPBmANA3ECIZ
ejnB/UhZYxPwA7IB0AMxJGBMKPJTHUB1bC+gAMAEEQDAqwJABJA/JH01QGEvTeL3JlkmZxFgSUzP
TdRPH1AvX0izUd8RYEewAiAnBUB0SmgLgGtTanMuJIs4wSRgJm5ic3ACgCZ4zCdhAUBbqElzXGIv
x/lcoGUgAiBCAC+wBbAt8O9BQGGUHUAFEHoCIS6BC1H4bmU/VE9VX1ZpJKkBwF8mZwqiVmgKgCSM
MCoBL/9AkWWfTH9F70b/SA9JH2Z/f0s/a59Xv1jPWd9a73NyZvA9dU49AMBkL2U/Zk//Z19ob2l/
ao9zP2yvbb9uz/9v33Dvcf9zD3QfdS92P3dP8YhVdW1neQ96H3svfD//fU9+X39vgH+Bj4Kfg6+E
v/+Fz4bfh++I/4oPix+ML50o1G0nBCBjA5FiYdCjEfpjLvBkXcyPD5AfkS+SP/+TT5RflW+Wf5eP
mJ+Zr5q//5vPnN+d757/oA+hH0R/pG//qp+4X16fX6+m36fvqP+qD/+6n6wvrT+uT69fsG+xf7KP
/7OftK+1v7bPt9+7v7zPz6//uT/CT74/v0/AX8Fvwn/Dj//En8Wvxr/Hz8jfye/K/02//07PzU9Q
788f0w/UH9pP0I//0Z/gH9aP15/Yr+pv6K/xz4/y39s/3E9An1NpZzbgknQIcGU17HAwNt4P798f
9h/3L/g7Uivx4V/gT/8AD/N/y//lYgcTzi/ngTIgyQLIUGFTMCBMUzALcLckjDZAPbFSJltcwGUi
MdkHWGh5DdEdAWUusBnQDnIIjwmfCqxVUyBG90DgMKAtIG8VQC8wC98M76MN/wL1Li46LVBNo9Bn
JjAxABBQIC1S8GEAQRsuEB1AbmIgEAJIdXPqaxdgICCwNyRgFCAUAP/o3+nv1S/u7+//88/03wLv
//2//s//3xl/Af8enwQfBS9DBj8kmDMzMDMpoXL5L6BBdmHQN1ARDxIfCqxFFRAuFTdWaWwIUGdd
YdBTOBAw8EEwSPngaL8qvyvPLN0IYDggLe4s5kDQTiA1NTrAOC+vML8BEywodykgNjEylC03+pAt
NWA0NDSf1zWvNr3lUHg3uTDnwDif7zmvEyxjwAhCQA/QoyAVY4QuazfgLm1uLhYQfzy/Pc8TLBcP
GB8eT+wIPC5BYwD6QHjAIu0gdHDQOi8vd0kgLhSQECDKaBYTLuQAbS/OHRZAO1NAIxJmU0BioA/Q
e0gAWVBFUkxJTkvmIEivSbl9fc7RU0APwPMjgOdBMVwIAUaPJa8mv/8nzwcMTP9JxkRfRW8ZKVgf
31kvUB/4YedwHUBB5oBBX29Cb0N/R19IanD6QFUAeSBnb29kcAuULnf+aRYw7NDlYWMgSh9LL0w/
/2IPYx9Oj0+fUK9Rv1LPU9//VOZnT2hdVo9Xn1nvdB91L39b31zvXf9fD2AfSC4LsHS7Y8FwgWej
wGPjfcIvcID6NA/QOHDFZC9lP0xufc//ft9/4Wlvan9rj2yfba9uv/+Cv4PPf4ZyL3M/dY+QX5Fv
/3d/eI98n1VAfytoUC8wcLD9+kBzY9+Av4HPls+X3oVv/4Z6kn+fT5NflG95P3pPoY9Pla9VF0Av
FhAvaJhQY/0WQG7lcJi/mc9Mb6hfqW//na+Gf4ePiJ+Jr4q/rR+uL/+qBI5vj3+gD7p/u4+h/6MC
/xnfGu8b/x0PvP8fLyA/IU//JH/En8Wvxr8ifyOPx8+x7/+y/7QPBwy4j7mfw5/MxegR/8ljvy/t
Q8DPyg/LH9WfwjHaMuOBUNq9yWFkyVAIUf5u55CwgOekvA/betgvwV/+M9QS3VzVT8jP2Y/an8v/
f80P5N/PL9A/0U/SX6aKJhRuYnGAO6SZJ2Ew/++P05/kH/LC1e/W/7/v4h//5z/qb+U/5k/6P/tP
6X//b//rn+yv7b/uzwJf88/kb/X///cP4W/5b/6fAc/cb91/3o//4N/grwx/4s/j3w+//P8Nv/8O
zwAvAT8ZDwNfBG8Ffx8P//Cf8a8j3wfv9N8J/wsP+A//Fi8bTx5/GU8aXy5PL18wb/8xfzKPM58Q
XxFvEn8UzxSf/xWvFr8Xzzgfwg9Ar0G/Qs//Q99E70X/Rw9IH0kvSj9LT/9MX01vTn9Pj1CfUa9S
v1PP/1TfVe9W/1gPWR9aL1s/XE9fXV9eb19/NP82DyCr8HJ6PR3wcqp7ZbFj0WaiY/hoXHGwv6OY
otGkbGPRR6WPYy9kPkhSIGvgYgBJbmRleD0tMVOqfDuAcWNncGqwkWTiYjyAfiBfcGJwIaUzfyyT
ao9rnh2PPM8fryC/PeRUYbbwbWEiLyMxJ/A7dR+muEKqe3ARebdGcnWYkDq93y97Wikqa+BwIC1s
LW93pWByQA+lQJwAmGCqIHN1LmUIZHUgtwAgYmVoayIAqwBvqwBBbhCWQHfsIE2X8CHgc7cAo0+k
X6+lb3p/e4+F9FOqEHR9PzN+TylXVGiBcGDgLzICOYxQMDA5IDk68jNyIFBNg1+Eb4V/ho/zh5+P
9FRviU+KX39cgJ0/jV+Ob49/kI+Rn4ildWI4amVjiT+ULylIUmXIOiBbf+NdICGgttB5IeBwZWvg
Z5AhkCGgbLGAcGF0aYGRtsBkIXDvIeCdEKHybiBttwC2oKHE/5cfmC+ZPyc/KE+mX6RvpX//HT4r
7z5/YI+ob3IfbC82eP83T7F/so9z9TmhaZ89P7TvD3X/IPZ4T3mZRG8geZpvgXBnoRBtwGhlZWEs
ZmaAcIkRIHggc3OMZXOhUL80c2Ftv3AbocBlcGltwL6wZmx5/4IhIrDApKmvqr+l/METo5CdwTA/
JC8lPyZKIEllYZ2iUGm/MoKQxgRzLKIjamUhkGjGEyCB4KJQYf+/iMLfw++l/IKQlrB0AKAA74GQ
IaC/Qzsgcr8QwCOgkPvBIsIyZmWAo1DKoL9RgaDzv1HCEGJvv1DRSKHQzJ9/za+l/MDXxiLSOCEA
eCBs92eQ0Q+jUC7Gf8ePyJ2l8PeBUMGyoQByv8CdENP/1Q8VpfxtwhB0nQBobmnscXXXsclgZ+Gw
wFDaDN/e79//qZ/jf+SNT4Ggi/H1yqBPnRAgjGDKoIyTwKH+OIzwjMCNMMqggmC/UIGQjcIQTH/w
5IBza2nlf9/mj+Sf2kx0ANtpPO3o6oViX+sGQHBklnCC4GfV7o9n76o+KTl3fQDhQP+dPOxf7W/u
f/Ofi2mAsMmwX8CBvwCCkMChowIhyVF1d8Bgy9E7IHrCEJawwRBu/cqgd/tAyyG+0tFQgaC/Ev9n
UMsAOxDCENPf9o/3n/iv4/m/yPZLRUGiI9MBgHBP3ZA7ICGglnAgWf5FZMe+sMDXwDUoY2/rMf2x
88BABeFzKf9vAH8BjwKf/wOvKWa/mMFjyqCC4L+PwJ/7/LAGgFLTAKHQ0EMJjwqffwuvDL8NzymT
OxGt4ILgbd0GgEN9EGpR/NFu4hDQof8hAKEA3UGiMhVSGmYGgIvw/9JxoKkTXxRvFX8WjxefKZPf
oW+gqhkxd7AGgFMS0f3w96JnyqChEGMSkaGQEuT7Uf/BwB0fHi8fPyBPIV9/lL9h/kW2wNMR20Ap
QOGAGiDKoDegr6G1yqFwGcIQ0Xdl7Gln25AIQGXhoKHQEDH8dnMnPyhPKV8qbyt/GKT+b6GgCTAl
5DFvMn8zjzSf/zWvOo84nzmvOr87z5VPgMv/9TDJwBFA9Y8+Xz9vQH9Bj8dHb0h/9GpBaC5M8C4S
/wXxgjGjIMEwLjBM8aKAMHGvBoBKT9svyJpZywBo4dLZJsFua3cQtlBj62AaIP/L0RCQgrAucC2h
EUBEv0XPf0bfSn9Lj1avV7/0eaIyZ7xsdVLSwcC/EQXibTBj/wclLkFSsDe/VO9V/1mfWq//YS9i
P2NPXs9f32YPZI9ln8dpr2q/a8RJJ21Scq3Q/1x0UhUmw11EgcDL0qMRv0GfwKH74dig6uCAsG4n
XYL/aLDL0NigZp9nr2i/bF9tb791z3bf9HlxY4Iw4UBuXm//dA91H3i/ec9+j3+fgK98L/99P4Nv
ge+C/4cPiB/oH+krrDY66TDqM0IjAG62wPWiUEOhoHkugIP/hQ+GH/+Jv4rPkc+S35Pv7u/v/3Cx
9Y5DY46zQBng8jD7QHuA/00QTdCXL5Wv9L+PP5BPkV9/m7+cz6FPol+jb6R/BD8n/9ihLxBDAMmw
HED90BChBbTLEVDLoHbBQWVm/LHdU2deEMsAXCAtLVH3vtEn/arRZxLAnl+fb6B/pq+nv++wL7E/
nTnJwDutb65/r4//sy+0P7h/uY+6n7uvvL9C0P+930/fyJqqsVxz0HFNxBFf/w/w+3JxMENwybAZ
sPJgtlD/TgG1v7bPt9++D78fyY/Kn//Lr8y/zc+D78fPyN/PD9Afv9Qv1T/WT9df2G9CwWIlQP5u
EsBb8RoCLwDRf9KP05//2c/a39/v4P/iD+Mf5C/Rb//eL98/5W/mf+qP65/sr+2/6+7PGMIuBnFO
nhLv78F//1DbHBEuBKohTaEREfty3GL/EacI4MOzTS/n3+jv6f/wL//xP/yf/a/+v//PAN/AX/Q/
dVDMV6zQbFwgEnBS0nbFjmB5UtJudW2ZscRgf02RxPObIPvgxGBSgxrBKPdcQatTXNQp+d/67/v/
Ai/vAz8OXw9vEHlzNxCq0Auf/wyvDb8RXxJvFs8X3xjvGf/3Gw8ssnAwPxQPFR8WLxxf/x1vId8i
7yP/JQ8mH+fPIB//IS8nXyhvLH8tjy6fL68wv/8pryq/K88x/zMPNx84Lzk//zpPO180TzVfNm88
nz2vQb//Qs9D30TvRf8ec4wRjRKMeFOM8HtBMTWNoDOM8EH3XBD2oFNQTcZQTlATsKnB/54PP+9A
/0cvSD9Pj1CfUa//Ur9Tz1TfTc9O31UPVh9aL/9bP1xPXV9eb19/YI+oLkygf8aBq1RygHDlCeD2
kHtAaZ9MgamxmiD3EqnkdHdxQHBvYmpljKAJE8VgZv5mqgHEQFfPWN9Z72KvY7//bD9tT25fb29w
f3GPcp8eN/f3A45grRBwZ0D4wApwTIHfZgBMwWahCIHFYHOsoMSO96swq3KawG9MAKnhC0Jpf/9q
j2ufdF91b33ffu9//4EPP4Ifgy+EPx43ZlCtEHdpeakxZmGpMQkwfOCZsGb/xlBn0cPRqkMJIPkQ
muDDsv55iOjEiXsffC99P4X/hw//j0+QX5Fvkn+Tj5Sfla8eOP3GIGX5z42Pjp+XX5hvnN//ne+e
/6APoR+iL6M/pE+ar/+bv6cPpY+mn6qvq7+sz63fr67vr/+xD0ugZvjybQeQX2awd1Bn0UxQiQBz
S5Bm/mkJAPegiKD4gGXymeHckfMKcGYAcXV3EPjy+IFMkf+2koozp2+of6mPsk+zX7vf/7zvvf+/
D8AfwS/CPx43CDH/ZsB58Wg1S5BlEPgQ8oD2oGR0dIsgc3X2oWUQY/PcoQmwbna7IPjA+VCLIP9n
NPiAePHc0IsgCTC5H7ov/7s/w//FD81/zo/Pn9Cv0b+/0s/T3x45idL2oHcxb/cgzGliiLC2kGll
9zMJsD9MQGhh8sDVbwWv9WogRP5v2VHKUYhiyhAT4GXx+YD9+IBvd6G5D8u/zM/Vj9af/+Gv4r/j
z+Tf5e/m/+gPHih9yDBnCyC2UGbBCRNM4GP4aG5pt6DZUYmhyNIH4Oe2UPZxtzRjY8hAePCIgfxh
eQkS3v/gD+Ef6d/q7//y3/Pv9P/2D/cf+C/5Px43+XcgcGV4RB7CZhwfD/Ef//Iv+u/7/wHvAv8E
DwUfBi//Bz8ITwlf/78AzwwfCp8Lr/8PvxDPEd8S7xP/FQ8WH2UA9XkAc9hwbXoDeYHKA9gD/2gJ
aAC1ILdgDpBldN3zjA//DQ8OHxbfF+8WbyEPIh8jL/8kPyVPJl8Yv3bAt+G1wWbz/3fAHlBKgbaD
eSPIQItAd4DfS5Acvu4RiZC2IGPZQO6h/+//Hq8fvyh/KY8x/zMPNB/fNS82PzdPOF+ZKWZMUGhw
/2bBSvG3URwPLcm28u5BZlH/S5BMcInjd4BlUYpxL08wX/8xbzovOz9Dv0TPRd9G70f//0kPSh92
Le0B/ZDtUNlyZwG/eSfbcLjA2i/bP9xMScnlfbWwZ1Hwx1CKkceRZRBv594QUjD+EG5r/cFBD0If
/0MvS+9M/1hPWV9ab1t/XI//XZ9er9d5/iX/L1aPV59gX/9hb2YvZz9oT2lfam9rf2yP/22fY/9l
D3Bfbt9v73P/dQ+fdh93L3g/eU96XyBUyhD5VTBzIXC/cc9y33uffK//gT+CT4NfhG+Ff4aPh5+I
r/9/D4Afi2+J74r/jw+QH5Evb5I/k0+UX3z/QbdQ2eB3/4u/jM+N35afl6+cL50/nk//n1+gb6F/
oo+jn5n/mw+mX/+k36Xvqf+rD6wfrS+uP6cv/6g/sP+vf7CPtJ+1r7a/t8//uN+xz7Lfu5+6H7sv
vz/AT//BX7zfve/Bj8Kfxq/Ev8XP/8lvx+/I/8oPyx/Ov80/zk9/z1/Qb9F/1R/WL9c/2EU1wdjB
L0ZPTlTZGdOHw9ew05ZccGFy3PjaGE/ZsN4x2h/Sljcy29FQG9kQ19ww0yDb4ERJViPcT+BvZzU4
29FCTyREWeHtMjfb0UhUFE1M2RB959AAAB4ANRABAAAASAAAADwxOTk2NDBEMUQ1RjM1ODREOTAy
MkFEQjA0NjZCQkQxMTAxQjdBNEYyQEVYQ0hBTkdFLnN0YW50aG9ueS5rMTIubW4udXM+AB4AORAB
AAAAEQEAADwyNDEzN18xMjU2ODY1Nzg4X245VTFON0xrMDI0MzE1X2RiODcxYTIyMDkxMDI5MTgy
MmkyNjhlOGVkZGoyYjc3YTYyY2UyZWIwMjUxQG1haWwuZ21haWwuY29tPjwyNDEzN18xMjU2ODY3
MTYwX245VTFqTmRoMDI1MDMwX2ZjLjAwMGY1NDc0MDIyYTQ0NTEzYjlhY2EwMDI1ZWI0ZWZiLjIy
YTQ0OTBAcGRzLm9yZz4gPDI0MTM3XzEyNTY4Njk5MTlfbjlVMlZ0T2IwMjgwMDFfZGI4NzFhMjIw
OTEwMjkxOTMwbDE5NjgwMTM5bWI4M2QxYzQwYWJiOGJjMDhAbWFpbC5nbWFpbC5jb20+AAAAAB4A
RxABAAAADwAAAG1lc3NhZ2UvcmZjODIyAAALAPIQAQAAAB8A8xABAAAAjAAAAFIARQAlADMAQQAg
AFsAdABhAHAALQBsAF0AIABjAGUAbgB0AHIAaQBwAGUAdABhAGwAIABhAGMAYwBlAGwAZQByAGEA
dABpAG8AbgAgAGEAbgBkACAAZgByAGkAYwB0AGkAbwBuACAAZABlAG0AbwBuAHMAdAByAGEAdABp
AG8AbgAuAEUATQBMAAAACwD2EAAAAABAAAcwzlzNaQ1ZygFAAAgw5DkuBg5ZygEDAN4/r28AAAMA
8T8JBAAAHgD4PwEAAAALAAAAUGF1bCBMdWxhaQAAAgH5PwEAAABoAAAAAAAAANynQMjAQhAatLkI
ACsv4YIBAAAAAAAAAC9PPUZJUlNUIE9SR0FOSVpBVElPTi9PVT1GSVJTVCBBRE1JTklTVFJBVElW
RSBHUk9VUC9DTj1SRUNJUElFTlRTL0NOPVBMVUxBSQAeAPo/AQAAABUAAABTeXN0ZW0gQWRtaW5p
c3RyYXRvcgAAAAACAfs/AQAAAB4AAAAAAAAA3KdAyMBCEBq0uQgAKy/hggEAAAAAAAAALgAAAAMA
/T/kBAAAAwAZQAAAAAADABpAAAAAAAMAHUAAAAAAAwAeQAAAAAAeADBAAQAAAAcAAABQTFVMQUkA
AB4AMUABAAAABwAAAFBMVUxBSQAAHgAyQAEAAAAbAAAAdGFwLWwtb3duZXJAbGlzdHMubmNzdS5l
ZHUAAB4AM0ABAAAAFAAAAGFtb3JyaTI5QGRlcGF1bC5lZHUAHgA4QAEAAAAHAAAAUExVTEFJAAAe
ADlAAQAAAAIAAAAuAAAAAwB2QP////8LACkAAAAAAAsAIwAAAAAAAwAGEK3P8BoDAAcQQAoAAAMA
EBAAAAAAAwAREA8AAAAeAAgQAQAAAGUAAABTSE9VTERNQVNTTUFUVEVSP0lET05UVEhJTktNQVNT
TUFUVEVSU0lTTlRGUklDVElPTlRIRU9OTFlGT1JDRUlOVEhFSE9SSVpPTlRBTFBMQU5FP0Y9VU49
TUFVTUc9TUFNU0NBAAAAAAIBfwABAAAASAAAADwxOTk2NDBEMUQ1RjM1ODREOTAyMkFEQjA0NjZC
QkQxMTAxQjdBNEYyQEVYQ0hBTkdFLnN0YW50aG9ueS5rMTIubW4udXM+AMZB

------_=_NextPart_001_01CA590E.06224E22--

From tap-l-owner@lists.ncsu.edu Thu Oct 29 23:13:11 2009
**

**

Back